0=-16x^2-32x+110

Simple and best practice solution for 0=-16x^2-32x+110 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16x^2-32x+110 equation:



0=-16x^2-32x+110
We move all terms to the left:
0-(-16x^2-32x+110)=0
We add all the numbers together, and all the variables
-(-16x^2-32x+110)=0
We get rid of parentheses
16x^2+32x-110=0
a = 16; b = 32; c = -110;
Δ = b2-4ac
Δ = 322-4·16·(-110)
Δ = 8064
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8064}=\sqrt{576*14}=\sqrt{576}*\sqrt{14}=24\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-24\sqrt{14}}{2*16}=\frac{-32-24\sqrt{14}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+24\sqrt{14}}{2*16}=\frac{-32+24\sqrt{14}}{32} $

See similar equations:

| -16-4(-5m+11)=17m | | 5v=v+33 | | 2t-16=3t-32 | | 7x+200=11x+80 | | 19x-12=8x-23 | | (t)=-16t^+50t+3.5 | | 8x+6=5x–12 | | 20x+16=0 | | 72+c-27=13c+9 | | +2x+6=20 | | 18u-6=16u | | X÷4=2x-16 | | 10t=-120 | | 7x2x-7=35 | | S+29=3s-32 | | X+19+3x=-5-13x-11 | | S+29=3s-33 | | +2x+5=3 | | 7|2x-7|=35 | | F(-5)=-4c+16 | | 27z=54 | | F(4)=-4c+16 | | 2t+23=t+41 | | 5(5x+84)=4(x+63) | | U=2u-19 | | g·3=0.9 | | 8x-2=5x-13 | | 6x-7=-35 | | 13x-7x=88+62 | | 32=4(3x−4) | | -24j=-96 | | +4x-16=2 |

Equations solver categories